VM0VM0
Integration

Qdrant

Vector database for semantic search and RAG

Qdrant is a vector database for storing and searching vector embeddings for RAG, semantic search, and recommendations.

Required Environment

NameTypeDescription
QDRANT_API_KEYsecretAPI key from Qdrant Cloud
QDRANT_URLvarQdrant cluster URL (e.g., https://xxx.cloud.qdrant.io:6333)

Configuration

vm0.yaml
version: "1.0"

agents:
  my-agent:
    provider: claude-code
    skills:
      - https://github.com/vm0-ai/vm0-skills/tree/main/qdrant

Run

vm0 run my-agent "search similar documents" \
  --secrets QDRANT_API_KEY=xxx

Example Instructions

AGENTS.md
# Vector Search Agent

You perform semantic search with Qdrant.

## Workflow

1. Receive search query
2. Generate query embedding
3. Search similar vectors
4. Return ranked results

## Distance Metrics

- Cosine, Dot, Euclidean
AGENTS.md
# RAG Retrieval Agent

You retrieve context for RAG.

## Workflow

1. Receive user question
2. Search relevant documents
3. Filter by metadata
4. Return context chunks

## Features

- Payload filtering
- Score thresholds